HAMP Recombinant Antibody

RACO0154

Product Information

Size: Protein Background:

50ul Liver-produced hormone that constitutes the main circulating regulator of iron absorption and distribution across tissues. Acts by promoting endocytosis and

Reactivity: degradation of ferroportin, leading to the retention of iron in iron-exporting cells and decreased flow of iron into plasma. Controls the major flows of iron into plasma:

absorption of dietary iron in the intestine, recycling of iron by macrophages, which phagocytose old erythrocytes and other cells, and mobilization of stored iron from

Human hepatocytes .

Gene ID: Isotype:

Rabbit IgG HAMP

Uniprot Applications:

P81172 ELISA, WB, IHC

Synonyms: Recommended dilutions:

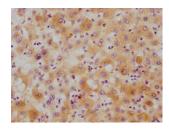
WB:1:500-1:5000, IHC:1:50-1:200

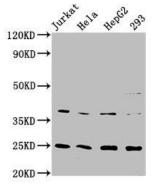
Hepcidin, Liver-expressed antimicrobial peptide 1, LEAP-1, Putative liver tumor regressor, PLTR, Hepcidin-25, Hepc25, Hepcidin-20, Hepc20, HAMP, HEPC, LEAP1,

UNQ487/PRO1003

Immunogen:

Storage:


A synthesized peptide derived from human HAMP.


Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.

Copyright © 2021 Assay Genie

info@assaygenie.com

Product Images

IHC image of RACO0154 diluted at 1:215 and staining in paraffinembedded human liver tissue performed on a Leica BondTM system. After dewaxing and hydration, antigen retrieval was mediated by high pressure in a citrate buffer (pH 6.0). Section was blocked with 10% normal goat serum 30min at RT. Then primary antibody (1% BSA) was incubated at 4°C overnight. The primary is detected by a biotinylated secondary antibody and visualized using an HRP conjugated SP system.

Western Blot

Positive WB detected in (Jurkat whole cell lysate) Hela whole cell lysate) HepG2 whole cell lysate) 293 whole cell lysate) All lanes: HAMP antibody at 2.15µg/ml

Secondary

Goat polyclonal to rabbit IgG at 1:50000 dilution

Predicted band size: 10 KDa Observed band size: 25 KDa