

Technical Manual

ChromaDazzle NAD/NADH Ratio Assay Kit

Catalogue Code: BA0067

Pack Size: 100 assays

Research Use Only

DESCRIPTION

Pyridine nucleotides play an important role in metabolism and, thus, there is continual interest in monitoring their concentration levels. Quantitative determination of NAD⁺/NADH has applications in research pertaining to energy transformation and redox state of cells or tissue. Simple, direct and automation-ready procedures for measuring NAD⁺/NADH concentration are very desirable.

The Assay Genie ChromaDazzle NAD/NADH Ratio Assay Kit is based on a lactate dehydrogenase cycling reaction, in which the formed NADH reduces a formazan (MTT) reagent. The intensity of the reduced product color, measured at 565 nm, is proportional to the NAD⁺/NADH concentration in the sample. This assay is highly specific for NAD⁺/NADH and with minimal interference (<1%) by NADP⁺/NADPH. Our assay is a convenient method to measure NAD, NADH and their ratio.

APPLICATIONS

Direct Assays: NAD⁺/NADH concentrations and ratios in cell or tissue extracts.

KEY FEATURES

Sensitive and accurate. Detection limit of 0.05 mM and linearity up to 10 μM NAD+/NADH in 96-well plate assay.

Convenient. The procedure involves adding a single working reagent, and reading the optical density at time zero and 15 min at room temperature.

High-throughput. Can be readily automated as a high-throughput 96-well plate assay for thousands of samples per day.

KIT CONTENTS

Assay Buffer:10 mLEnzyme A: $120 \mu L$ Lactate:1.5 mLEnzyme B: $120 \mu L$ MTT Solution:1.5 mLNAD Standard:0.5 mL

NAD/NADH Extraction Buffers: each 12 mL

Storage conditions. The kit is shipped on ice. Store all reagents at -20°C. Shelf life: 6 months after receipt.

Precautions: reagents are for research use only. Normal precautions for laboratory reagents should be exercised while using the reagents. Please refer to Material Safety Data Sheet for detailed information.

GENERAL CONSIDERATIONS

- 1. At these concentrations, the standard curves for NAD and NADH are identical. Since NADH in solution is unstable, we provide only NAD as the standard.
- 2. This assay is based on an enzyme-catalyzed kinetic reaction. Addition of Working Reagent should be quick and mixing should be brief but thorough. Use of multi-channel pipettor is recommended.
- 3. The following substances interfere and should be avoided in sample preparation. EDTA (>0.5 mM), ascorbic acid, SDS (>0.2%), sodium azide, NP-40 (>1%) and Tween-20 (>1%).
- 4. For samples containing higher than 100 μM pyruvate, we recommend using an internal standard.

PROCEDURES

1. Sample Preparation. For tissues weigh ~20 mg tissue for each sample, wash with cold PBS. For cell samples, wash cells with cold PBS and pellet ~ 10^5 cells for each sample. Homogenize samples (either tissue or cells) in a 1.5 mL Eppendorf tube with either 100 μ L NAD extraction buffer for NAD determination or 100 μ L NADH extraction buffer for NADH determination. Heat extracts at 60°C for 5 min and then add 20 μ L Assay Buffer and 100 μ L of the opposite extraction buffer to neutralize the extracts. Briefly vortex and spin the samples down at 14,000 rpm for 5 min. Use supernatant for NAD/NADH assays. Determination of both NAD and NADH concentrations requires extractions from two separate samples.

2. Calibration Curve. Prepare 500 μL 10 mM NAD Premix by mixing 5 μL 1 mM Standard and 495 μL distilled water. Dilute standard as follows.

No	Premix + H ₂ O	NAD (mM)
1	100 µL + 0 µL	10
2	60 µL + 40 µL	6
3	30 µL + 70 µL	3
4	0 μL + 100 μL	0

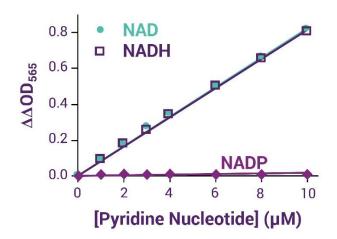
Transfer 40 µL standards into wells of a clear flat-bottom 96-well plate.

- 3. Samples. Add 40 µL of each sample in separate wells.
- 4. Reagent Preparation. For each well of reaction, prepare Working Reagent by mixing 60 μL Assay Buffer, 1 μL Enzyme A, 1 μ L Enzyme B, 14 μ L Lactate and 14 μ L MTT. Fresh reconstitution is recommended.
- 5. Reaction. Add 80 µL Working Reagent per well quickly. Tap plate to mix briefly and thoroughly.
- 6. Read optical density (OD₀) for time "zero" at 565 nm (520-600nm) and OD₁₅ after a 15-min incubation at room temperature.

CALCULATION

First compute the DOD for each standard and sample by subtracting OD₀ from OD₁₅. Plot the standard DOD's and determine the slope. The NAD(H) concentration of the sample is computed as follows:

$$[NAD(H)] = \frac{\Delta OD_{SAMPLE} - \Delta OD_{BLANK}}{Slope (\mu M^{-1})} \times n \quad (\mu M)$$


Where DOD_{SAMPLE} and DOD_{BLANK} are the change in optical density values of the Sample and Blank (STD 4) respectively. Slope is the slope of the standard curve and *n* is the dilution factor (if necessary).

Note: If the sample Δ OD values are higher than the Δ OD value for the 10 μ M standard, dilute sample in distilled water and repeat this assay. Multiply the results by the dilution factor.

MATERIALS REQUIRED, BUT NOT PROVIDED

Pipetting (multi-channel) devices. Clear-bottom 96-well plates (e.g. Corning Costar) and plate reader.

Standard Curve in 96-well plate assay

Contact Details

Dublin, Ireland

Email: info@assaygenie.com

Web: www.assaygenie.com

Technical Support: <u>Techsupport@assaygenie.com</u>

Copyright © 2017 ReagentBio, All Rights Reserved. All information / detail is correct at time of going to print.