Ammonia Colorimetric Assay Kit

(Catalog #BN00632; 100 assays; Store kit at -20° C)

I. Introduction:

Ammonia is an important source of nitrogen for living systems. Nitrogen is required for the synthesis of amino acids, which are the building blocks of protein. Ammonia is a metabolic product which is created through amino acid deamination. It plays an important role in both normal and abnormal animal physiology such as acid/base balance. Assay Genie provides a rapid, simple, sensitive, and reliable assay suitable for research and high throughput assay of Ammonia or Ammonium. In the assay, Ammonia or ammonium is converted to a product that reacts with the GenieRed probe to generate color (OD 570 nm) which can be easily quantified by plate reader. The kit can detect 1 nmol (~20 μ M) of ammonia or ammonium, much more sensitive than measuring NADPH based ammonia assay.

II. Kit Contents:

Components	100 assays	Cap Color	Part Number
Ammonia Assay Buffer	25 ml	WM	BN00632-1
GenieRed Probe in DMSO	200 μl	Red	BN00632-2
Enzyme Mix (lyophilized)	1 vial	Green	BN00632-3
Developer	1 vial	Orange	BN00632-4
Converting Enzyme (Lyophilized)	1 vial	Blue	BN00632-5
NH₄CI Standard (10 mM)	100 μl	Yellow	BN00632-6

III. Storage and Handling:

Store the kit at -20°C, protect from light. Allow Assay Buffer to warm to room temperature before use. Briefly centrifuge vials before opening. Read the entire protocol before performing the assay. All the solution in this kit should be kept capped when not in use to prevent absorption of ammonia from the air.

IV. Reagent preparation:

GenieRed Probe: Warm to room temperature before use. Store at -20°C, protect from light and moisture.

Enzyme Mix, Developer and Converting Enzyme: Dissolve in 220 µl Assay Buffer separately. Aliquot to prevent multiple freeze/thaw cycle. Store at -20°C. Use within two months.

V. Ammonia Assay Protocol:

1. Standard Curve Preparation:

Dilute the Ammonium Chloride standard solution to 1 mM by adding 10 μ l of the 10 mM Ammonium Chloride Standard to 90 μ l of ddH₂O, mix well. Add 0, 2, 4, 6, 8, 10 μ l into each well individually. Adjust volume to 50 μ l/well with Assay Buffer to generate 0, 2, 4, 6, 8, 10 nmol/well of the Ammonium Chloride Standard.

2. Sample Preparations:

Tissues (20 mg) or cells ($2x10^6$) can be homogenized in 100 µl Assay Buffer, centrifuge at 13,000 xg for 10 minutes to remove insoluble material. Liquid sample can be tested directly. Add 2-50 µl sample to 96 well plate, bring the volume to 50 µl/well with Assay Buffer. For unknown samples, we suggest testing several different doses of samples to make sure the readings are within the standard curve range.

Note: Pyruvate in samples will interfere with the assay. If significant amount of pyruvate is suspected in your sample, set a Sample Control as in step 3. The pyruvate reading can be subtracted from sample readings.

 Reaction Mix: Mix enough reagents for the number of assays to be performed. For each well, prepare a total 50 µl Reaction Mix.

	Sample	Sample Control
Ammonia Assay Buffer	42 µl	44 µl
GenieRed Probe	2 µl	2 µl
Enzyme Mix	2 µl	2 µl
Developer	2 µl	2 µl
Converting Enzyme	2 µl	0 µl

Add 50 μ I of the **Reaction Mix** to each well containing the NH₄Cl Standard and test samples. Add 50 μ I Sample Control Mix to Sample Control. Mix well. Incubate the reaction for 60 min at 37°C, protect from light.

- 4. **Measurement:** Measure O.D. 570 nm in a micro plate reader.
- 5. Calculation: Correct background by subtracting the value derived from the 0 NH₄Cl from all readings (The background reading can be significant and must be subtracted from readings). Subtract the Sample Control readings from sample readings. Plot NH₄Cl standard Curve, NH₄Cl concentrations of the samples can then be calculated:

$C = S_a/S_v$ nmol/µl or mM,

where S_a is the sample amount (in nmol) from standard curve. S_v is the sample volume (µI) added into the wells. NH₄⁺ Molecular Weight is 18.04 g/mol.

Figure. Ammonia Standard Curve (a). Ammonia concentration in human urine (25 μ l, 100 times diluted) (b) and HeLa cell lysate (3 μ l, 10.8 mg/ml) (c). Assay was performed according to the kit protocol.

FOR RESEARCH USE ONLY! Not to be used on humans.

Problems	Cause	Solution
Assay not working	Use of ice-cold assay buffer	Assay buffer must be at room temperature
	Omission of a step in the protocol	Refer and follow the data sheet precisely
	Plate read at incorrect wavelength	• Check the wavelength in the data sheet and the filter settings of the instrument
	Use of a different 96-well plate	• Fluorescence: Black plates ; Luminescence: White plates ; Colorimeters: Clear plates
Samples with erratic readings	Use of an incompatible sample type	Refer data sheet for details about incompatible samples
	Samples prepared in a different buffer	Use the assay buffer provided in the kit or refer data sheet for instructions
	Samples were not deproteinized (if indicated in datasheet)	Use the 10 kDa spin cut-off filter or PCA precipitation as indicated
	Cell/ tissue samples were not completely homogenized	Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope
	Samples used after multiple free-thaw cycles	Aliquot and freeze samples if needed to use multiple times
	Presence of interfering substance in the sample	Troubleshoot if needed, deproteinize samples
	Use of old or inappropriately stored samples	Use fresh samples or store at correct temperatures till use
Lower/ Higher readings in Samples and Standards	Improperly thawed components	Thaw all components completely and mix gently before use
	Use of expired kit or improperly stored reagents	Always check the expiry date and store the components appropriately
	Allowing the reagents to sit for extended times on ice	Always thaw and prepare fresh reaction mix before use
	 Incorrect incubation times or temperatures 	Refer datasheet & verify correct incubation times and temperatures
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly
Readings do not follow a linear pattern for Standard curve	Use of partially thawed components	Thaw and resuspend all components before preparing the reaction mix
	Pipetting errors in the standard	Avoid pipetting small volumes
	Pipetting errors in the reaction mix	Prepare a master reaction mix whenever possible
	Air bubbles formed in well	Pipette gently against the wall of the tubes
	Standard stock is at an incorrect concentration	Always refer the dilutions in the data sheet
	Calculation errors	Recheck calculations after referring the data sheet
	Substituting reagents from older kits/ lots	Use fresh components from the same kit
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting
	Samples contain interfering substances	Troubleshoot if it interferes with the kit
	Use of incompatible sample type	• Refer data sheet to check if sample is compatible with the kit or optimization is needed
	Sample readings above/below the linear range	Concentrate/ Dilute sample so as to be in the linear range
Note: The most probable list of cause	es is under each problem section. Causes/ Solutions may overlap	with other problems.