

Xanthine Oxidase Activity Colorimetric/Fluorometric Assay Kit (#BN00930)

(Catalog #BN00930; 100 assays; Store kit at -20° C)

I. Introduction:

Xanthine oxidase (XO, EC 1.17.3.2) is present in appreciable amounts in the liver and jejunum in healthy individuals. However, in various liver disorders, XO is released into circulation. Therefore, determination of serum XO level serves as a sensitive indicator of acute liver damage such as jaundice. Assay Genie has developed an easy and sensitive assay to determine XO in variety of samples. In the assay, XO oxidizes xanthine to hydrogen peroxide (H_2O_2) which reacts stoichiometrically with GenieRed Probe to generate color (at λ = 570 nm) and fluorescence (at Ex/Em = 535/587 nm). Since the color or fluorescence intensity is proportional to XO content, the XO activity can be accurately measured. The kit detects 1-100 mU xanthine oxidase in 100 μ l reaction volume.

II. Kit Contents:

Components	BN00930	Cap Code	Part Number
XO Assay Buffer GenieRed Probe (in DMSO) XO Enzyme Mix XO Substrate Mix XO Positive Control H ₂ O ₂ Standard (0.88 M)	25 ml	WM	BN00930-1
	200 µl	Red	BN00930-2A
	Iyophilized	Green	BN00930-4
	Iyophilized	Purple	BN00930-5
	8 µl	Blue	BN00930-6
	0.1 ml	Yellow	BN00930-7

III. Reagent Preparation and Storage Conditions:

GenieRed Probe: Ready to use as supplied. (Need to warm > 20°C to melt frozen DMSO). Store at -20°C, use within two months.

XO Enzyme Mix: Dissolve with 220 µl dH₂O. Pipette up and down to dissolve completely.

XO Substrate Mix: Dissolve with 220 μl dH₂O. Pipette up and down to dissolve completely.

XO Positive Control: Dilute with 92 μ l dH₂O. Pipette up and down to dissolve completely. All components in kit should store at -20 $^{\circ}$ C and use within two months.

IV. Xanthine Oxidase Assay Protocol:

1. Standard Curve Preparations:

Dilute 4 μl of 0.88 M H₂O₂ Standard into 348 μl dH₂O to generate 10 mM H₂O₂ Standard, then dilute 20 μl of 10 mM H₂O₂ Standard into 980 μl dH₂O to generate 0.2 mM H₂O₂ Standard.

Colorimetric assay: Add 0, 10, 20, 30, 40, 50 μ l of the 0.2 mM H₂O₂ Standard into 96-well plate in duplicates, bring the total volume to 50 μ l each well with dH₂O to generate 0, 2, 4, 6, 8, 10 nmol/well H₂O₂ Standard.

Fluorometric assay: Dilute 50 μ l fresh 0.2 mM H₂O₂ into 950 μ l dH₂O to generate 10 μ M H₂O₂ Standard. Add 0, 10, 20, 30, 40, 50 μ l of the 10 μ M H₂O₂ into 96-well plate in duplicates, bring volume to 50 μ l with dH₂O to generate 0, 0.1, 0.2, 0.3, 0.4, 0.5 nmol/well H₂O₂ Standard.

2. Sample and Positive Control Preparations: Prepare test samples in 50 μl/well with assay buffer in a 96-well plate. Serum can be directly added into sample wells, and adjust volume to 50 μl/well with dH₂O. Tissues or cells can be extracted with 4 volumes of the Assay Buffer, centrifuge (16,000 x g, 10 min) to get clear XO extract. For the positive control, add 5 μl positive control solution to wells, adjust volume to 50 μl/well with dH₂O. H₂O₂ in the sample will generate background. It is important to set up a background control. We suggest using several doses of your sample to ensure the readings are within the linear range.

3. Reaction Mix Preparation: Mix enough reagents for the number of assays and standard to be performed. For each well, prepare a total 50 ul Reaction Mix containing:

Xanthine Oxidase Measurement	Background Control
44 μl Assay Buffer	46 μl Assay Buffer
2 μl Substrate Mix	
2 μl Enzyme Mix	2 μl Enzyme Mix
2 μl GenieRed Probe**	2 μl GenieRed Probe

** For the fluorescent assay, dilute GenieRed probe 10X to reduce background readings.

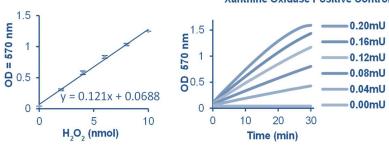
- 5. Measure the plate immediately (OD = 570 nm for colorimetric assay or at Ex/Em = 535/587 nm for fluorometric assay) at T₁ to read A₁, measure again at T₂ after incubating the reaction at 25° C for 10 20 min (or incubate longer time if the sample XO activity is low) to read A₂, protect from light. The signal generated by XO is ΔA = A₂ A₁

Notes

- 1) It is essential to read A_1 and A_2 in the reaction linear range. It will be more accurate if you read the reaction kinetics. Then choose A_1 and A_2 in the reaction linear range.
- 2) Read H_2O_2 standard after 20 min incubation without subtract A1. The standard is stable for a few hours.
- **6.** Calculation: Subtract background from all readings. Plot the H_2O_2 standard Curve. Apply sample ΔA to the H_2O_2 standard curve to get B nmol of H_2O_2 (H_2O_2 generated between T_1 and T_2 in the reaction by XO).

XO Activity =
$$\frac{B}{(T2-T1)\times V}$$
 x Sample Dilution Factor = nmol/min/ml = mU/ml.

Where: **B** is the amount of H₂O₂ generated by XO from standard curve (in nmol).


 T_1 is the time of the first reading (A1) (in min).

T₂ is the time of the second reading (A2) (in min).

V is the pretreated sample volume added into the reaction well (in ml).

Unit Definition: One unit xanthine oxidase is defined as the amount of enzyme catalyzes the oxidation of xanthine, yielding 1.0 μ mol of uric acid and H_2O_2 per minute at 25° C.

Xanthine Oxidase Positive Control

FOR RESEARCH USE ONLY! Not to be used on humans.

GENERAL TROUBLESHOOTING GUIDE:

Problems	Cause	Solution	
Assay not working	Use of ice-cold assay buffer	Assay buffer must be at room temperature	
	Omission of a step in the protocol	Refer and follow the data sheet precisely	
	Plate read at incorrect wavelength	Check the wavelength in the data sheet and the filter settings of the instrument	
	Use of a different 96-well plate	Fluorescence: Black plates (clear bottoms); Luminescence: White plates; Colorimeters: Clear plates	
Samples with erratic readings	Use of an incompatible sample type	Refer data sheet for details about incompatible samples	
	Samples prepared in a different buffer	Use the assay buffer provided in the kit or refer data sheet for instructions	
	Cell/ tissue samples were not completely homogenized	Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope	
	Samples used after multiple free-thaw cycles	Aliquot and freeze samples if needed to use multiple times	
	Presence of interfering substance in the sample	Troubleshoot if needed	
	Use of old or inappropriately stored samples	Use fresh samples or store at correct temperatures until use	
Lower/ Higher readings in Samples and Standards	Improperly thawed components	Thaw all components completely and mix gently before use	
	Use of expired kit or improperly stored reagents	Always check the expiry date and store the components appropriately	
	Allowing the reagents to sit for extended times on ice	Always thaw and prepare fresh reaction mix before use	
	Incorrect incubation times or temperatures	Refer datasheet & verify correct incubation times and temperatures	
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly	
Readings do not follow a linear pattern for Standard curve	Use of partially thawed components	Thaw and resuspend all components before preparing the reaction mix	
	Pipetting errors in the standard	Avoid pipetting small volumes	
	Pipetting errors in the reaction mix	Prepare a master reaction mix whenever possible	
	Air bubbles formed in well	Pipette gently against the wall of the tubes	
	Standard stock is at an incorrect concentration	Always refer the dilutions in the data sheet	
	Calculation errors	Recheck calculations after referring the data sheet	
	Substituting reagents from older kits/ lots	Use fresh components from the same kit	
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting	
	Samples contain interfering substances	Troubleshoot if it interferes with the kit	
	Use of incompatible sample type	Refer data sheet to check if sample is compatible with the kit or optimization is needed	
	Sample readings above/below the linear range	Concentrate/ Dilute sample so as to be in the linear range	
Note: The most probable list of caus	es is under each problem section. Causes/ Solutions may overla	o with other problems.	