

Isocitrate Dehydrogenase Activity Colorimetric Assay Kit

(Catalog # BN00969; 100 reactions; Store kit at -20°C)

I. Introduction:

Isocitrate dehydrogenase (IDH; EC 1.1.1.41, NAD $^+$) is an enzyme that participates in the citric acid cycle. These IDH3 isoforms catalyze the oxidative decarboxylation of isocitrate, producing α -ketoglutarate and CO $_2$ while converting NAD $^+$ to NADH. This is a two-step process, which involves oxidation of isocitrate to oxalosuccinate, followed by the decarboxylation of the beta-carboxyl group to form the ketone, α -ketoglutarate. Other isoforms (EC 1.1.1.42, NADP $^+$) catalyze the same reaction, but unrelated to the citric acid cycle. It is carried out in the mitochondrion (IDH2) as well as in the cytosol and peroxisome (IDH1) and use NADP $^+$ as a cofactor instead of NAD $^+$. Assay Genie's Isocitrate Dehydrogenase Assay Kit provides a convenient tool for sensitive detection of NAD $^+$ -dependent, NADP $^+$ -dependent or both IDHs in a variety of samples. The IDHs utilize isocitrate as a specific substrate leading to a proportional color development and can be easily quantified colorimetrically (λ = 450 nm) with detection sensitivity as low as 0.01 mU.

II. Kit Contents:

Components	BN00969	Cap Code	Part Number
IDH Assay Buffer NAD+ (Iyophilized) NADP+ (Iyophilized) IDH Substrate (Iyophilized) Developer (Iyophilized) IDH Positive Control (NADP+)	25 ml 1 vial 1 vial 1 vial 1 vial 20 μl	WM Blue Brown Red Purple Green	BN00969-1 BN00969-2 BN00969-3 BN00969-4 BN00969-5 BN00969-6
NADH Standard (0.5 μl mol, lyophilized)	1 vial	Yellow	BN00969-7

III. Storage and Handling:

Store the kit at -20°C, protect from light. Allow IDH Assay Buffer to warm to room temperature before use. Briefly centrifuge vials prior to opening. Read the entire protocol before performing the assay.

IV. Reagent Reconstitution and General Consideration:

- Reconstitute the NAD⁺, NADP⁺, and IDH Substrate with 220 μlddH₂O separately.
- Reconstitute the Developer with 0.9 ml of ddH₂O. Pipette up and down several times to completely dissolve the pellet into solution (**Don't vortex**).
- \bullet Reconstitute the NADH Standard with 50 μ l ddH₂O to generate a 10 mM NADH stock solution
- All components are stable for up to 2 months at -20°C after reconstitution or freeze-thaw cycles (< 5 times).

V. IDH Assay Protocol:

- 1. **NADH Standard Curve:** Dilute 10 μ l of the 10 mM NADH stock solution with 90 μ l of Assay Buffer to generate a 1 mM NADH standard. Add 0, 2, 4, 6, 8, 10 μ l of the 1 mM NADH standard into a 96-well plate in duplicate to generate 0, 2, 4, 6, 8, 10 nmol/well standards. Adjust the final volume to 50 μ l with Assay Buffer. The NADH standard curve can be used as the standard of NAD+ IDH as well as NADP+ IDH.
- 2. **Sample Preparations:** Tissues (50 mg) or cells (1 × 10⁶) can be homogenized in ~ 200 μl ice-cold Assay Buffer, then centrifuged (13,000 x g, 10 min) to remove insoluble material. 5 50 μl serum samples can be directly added into 96-well plate. Adjust the total volume of test samples to 50 μl/well with Assay Buffer. We suggest testing several doses of your sample to make sure the readings are within the linear range of the standard curve. For positive control (optional), add 2-5 μl positive control solution to wells and adjust to 50 μl with Assay Buffer. NAD(P)H in samples will generate background, so if NAD(P)H is in your sample, set up the background control group to avoid the interference (see next step).

3. **Reaction Mix:** Mix enough reagents for the number of assays to be performed. For each well, prepare a Reaction Mix (50 µI) containing:

Reaction MixBackground Control Mix40 μl IDH Assay Buffer42 μl IDH Assay Buffer8 μl Developer8 μl Developer

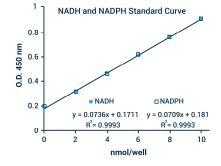
2 μl IDH Substrate

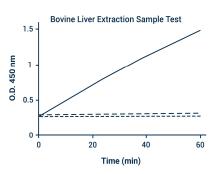
2 μl NAD+ or NADP+ or both (then use 38 μl Assay Buffer)*

Add 50 μ l of the Reaction Mix to each well containing the test samples, positive controls, and standards or 50 μ l of the Background Control Mix to background control well. Mix well.

Note: Add NAD, the assay will detect NAD* dependent IDH; add NADP*, the assay will detect NADP* dependent IDH; add both NAD* and NADP*, the assay will detect total IDHs.

- 4. Incubate the mix for 3 min at 37 °C, then measure OD 450 nm in a microplate reader (A_0), incubate for another 30 min to 2 hr at 37 °C to measure OD 450 nm again (A_1), (Note: Incubation times will depend on the IDH activity in the samples). We recommend measuring the OD in a kinetic method (preferably every 1 5 min) and choose the period of linear range to calculate the IDH activity of the samples. The NADH Standard Curve can be read in Endpoint Mode (i.e., at the end of the incubation time).
- Calculation: Subtract the 0 Standard values from all readings (standards and test samples).
 Plot the NADH Standard Curve. Calculate the IDH activity of the test samples: ΔOD = A₁ A₀,
 apply the ΔOD to the NADH standard curve to get B nmol of NAD(P)H generated by IDH
 during the reaction time (ΔT = T₂ T₁).


IDH Activity =
$$\frac{B}{\Delta T \times V} \times \text{Sample Dilution Factor} = \text{nmol/min/ml} = \text{mU/ml}$$


Where: B: the NAD (P)H amount from Standard Curve (in nmol).

T: the reaction time (in min).

V: the sample volume added into the reaction well (in ml).

Unit Definition: One unit IDH is the amount of enzyme that will generate 1.0 μ mol of NADH or NADPH per min at pH 8 at 37 °C.

FOR RESEARCH USE ONLY! Not to be used on humans.

Problems	Cause	Solution	
Assay not working	Use of ice-cold assay buffer	Assay buffer must be at room temperature	
	Omission of a step in the protocol	Refer and follow the data sheet precisely	
	Plate read at incorrect wavelength	Check the wavelength in the data sheet and the filter settings of the instrument	
	Use of a different 96-well plate	Fluorescence: Black plates (clear bottoms); Luminescence: White plates; Colorimeters: Clear plates	
Samples with erratic readings	Use of an incompatible sample type	Refer data sheet for details about incompatible samples	
	Samples prepared in a different buffer	Use the assay buffer provided in the kit or refer data sheet for instructions	
	Cell/ tissue samples were not completely homogenized	Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope	
	Samples used after multiple free-thaw cycles	Aliquot and freeze samples if needed to use multiple times	
	Presence of interfering substance in the sample	Troubleshoot if needed	
	Use of old or inappropriately stored samples	Use fresh samples or store at correct temperatures until use	
Lower/ Higher readings in Samples and Standards	Improperly thawed components	Thaw all components completely and mix gently before use	
	Use of expired kit or improperly stored reagents	Always check the expiry date and store the components appropriately	
	Allowing the reagents to sit for extended times on ice	Always thaw and prepare fresh reaction mix before use	
	Incorrect incubation times or temperatures	Refer datasheet & verify correct incubation times and temperatures	
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly	
Readings do not follow a linear pattern for Standard curve	Use of partially thawed components	Thaw and resuspend all components before preparing the reaction mix	
	Pipetting errors in the standard	Avoid pipetting small volumes	
	Pipetting errors in the reaction mix	Prepare a master reaction mix whenever possible	
	Air bubbles formed in well	Pipette gently against the wall of the tubes	
	Standard stock is at an incorrect concentration	Always refer the dilutions in the data sheet	
	Calculation errors	Recheck calculations after referring the data sheet	
	Substituting reagents from older kits/ lots	Use fresh components from the same kit	
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting	
	Samples contain interfering substances	Troubleshoot if it interferes with the kit	
	Use of incompatible sample type	Refer data sheet to check if sample is compatible with the kit or optimization is needed	
	Sample readings above/below the linear range	Concentrate/ Dilute sample so as to be in the linear range	