

Glucose Dehydrogenase Activity Colorimetric Assay Kit # BN00999

(Catalog #BN00999; 100 reactions; Store kit at -20°C)

I. Introduction:

Glucose 1-dehydrogenase (NAD⁺) (EC 1.1.1.118) is an enzyme that catalyzes the chemical reaction: D-glucose + NAD⁺ \longleftrightarrow D-glucono-1,5-lactone + NADH + H⁺. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-OH group of donor with NAD⁺ or NADP⁺ as acceptor. Assay Genie's Glucose Dehydrogenase (GDH) Assay Kit provides a convenient tool for sensitive detection of the GDH in a variety of samples. The GDH present in sample will recognize D-glucose as a specific substrate leading to a proportional color development. The activity of GDH can be easily quantified colorimetrically (λ = 450 nm). This assay detects GDH activity as low as 0.01 mU with our unit definition.

II. Kit Contents:

Components	BN00999	Cap Code	Part No.
GDH Assay Buffer	25 ml	WM	BN00999-1
Glucose (2 M)	1 ml	Blue	BN00999-2
Developer (lyophilized)	1 vial	Red	BN00999-3
GDH Positive Control (lyophilized)	1 vial	Green	BN00999-4
NADH Standard (0.5 μmol, Lyophilized)	1 vial	Yellow	BN00999-5

III. Storage and Handling:

Store the kit at -20°C, protect from light. Allow Assay Buffer to warm to room temperature before use. Briefly centrifuge vials prior to opening. Read the entire protocol before performing the assay.

IV. Reagent Reconstitution and General Consideration:

- Reconstitute Developer with 0.9 ml of ddH₂O. Pipette up and down several times to completely dissolve the pellet into solution (**Do not vortex**).
- Reconstitute the GDH Positive Control with 220 µl Assay Buffer; Keep on ice during the preparation and protect from light. Aliquot and store -20°C.
- Reconstitute the NADH with 50 μl ddH₂O to generate a 10 mM NADH stock solution.
- The GDH Positive Control and the Developer are stable for up to 2 months at -20°C after reconstitution or freeze-thaw cycles (< 5 times). Reconstituted NADH (10 mM) and the supplied Glucose (2 M) solution are stable for up to 6 months at -20°C.

V. Glucose Dehydrogenase Assay Protocol:

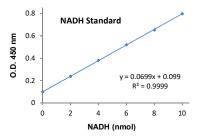
- 1. **NADH Standard Curve:** Dilute 10 μ l of the 10 mM NADH stock solution with 90 μ l of Assay Buffer to generate a 1 mM NADH standard. Add 0, 2, 4, 6, 8, 10 μ l of the 1 mM NADH standard into a 96-well plate in duplicate to generate 0, 2, 4, 6, 8, 10 nmol/well standards. Adjust the final volume to 50 μ l with Assay buffer.
- 2. **Sample Preparations:** Tissues (50 mg) or cells (1 x 10⁶) can be homogenized in $\sim 200~\mu l$ ice-cold Assay Buffer then centrifuged (13,000 x g, 10 min.) to remove insoluble material. 5 $50~\mu l$ serum samples can be directly diluted in the Assay Buffer. Adjust the final volume of test samples to $50~\mu l$ /well with Assay Buffer in a 96-well plate. We suggest testing several doses of your sample to make sure the readings are within the linear range of the standard curve and set up the background control group to avoid interference of the NADH in the sample. For the positive control (optional), add 2 μl positive control solution to wells and adjust to a final volume of $50~\mu l$ with Assay Buffer.

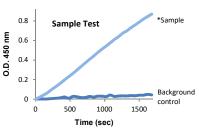
3. **Reaction Mix**: Mix enough reagents for the number of assays to be performed. For each well, prepare a Reaction Mix (100 ul) containing:

Reaction Mix	Background Control Mix
82 μl Assay Buffer	92 μl Assay Buffer
8 μl GDH Developer	8 μl GDH Developer
10 μl 2 M Glucose	

Add 100 μ l of the Reaction Mix to each well containing the test samples, positive controls, and standards; add 100 μ l of the Background Control Mix to each well containing the background control sample. Mix well.

- 4. Measurement: Incubate the mix for 3 min at 37°C, then measure OD at 450 nm in a microplate reader (A₀), incubate for another 30 mins to 2 hrs at 37°C and measure OD at 450 nm again (A₁), (Note: Incubation times depends on the GDH activity in your samples). We recommend measuring the OD in a kinetic method (preferably every 3 5 min) and choose the period of linear range to calculate the GDH activity of the samples. The NADH Standard Curve can read in Endpoint Mode (i.e., at the end of the incubation time).
- 5. Calculation: Subtract the 0 Standard value from all readings (standards and test samples). Plot the NADH standard Curve, then calculate the GDH activity of the test samples: ΔOD = A₁ A₀, apply the ΔOD to the NADH standard curve to get B nmol of NADH generated by GDH during the reaction time (ΔT = T₂ T₁).


GDH Activity =
$$\frac{B}{\Delta T \times V}$$
 × Sample Dilution Factor = nmol/min/ml = mU/ml


Where: **B** is the glutamate amount from standard curve (in nmol).

T is the time incubated.

V is the sample volume added into the reaction well (in ml).

Unit Definition: One unit is the amount of enzyme that will generate 1.0 μ mol of NADH per min at pH 8 at 37°C.

*Sample: Bovine Liver extraction (36µg protein)

FOR RESEARCH USE ONLY! Not to be used on humans.

GENERAL TROUBLESHOOTING GUIDE:

Problems	Cause	Solution		
Assay not working	Use of ice-cold assay buffer	Assay buffer must be at room temperature		
	Omission of a step in the protocol	Refer and follow the data sheet precisely		
	Plate read at incorrect wavelength	Check the wavelength in the data sheet and the filter settings of the instrument		
	Use of a different 96-well plate	• Fluorescence: Black plates (clear bottoms) ; Luminescence: White plates ; Colorimeters: Clear plates		
Samples with erratic readings	Use of an incompatible sample type	Refer data sheet for details about incompatible samples		
	Samples prepared in a different buffer	Use the assay buffer provided in the kit or refer data sheet for instructions		
	Samples were not deproteinized (if indicated in datasheet)	Use the 10 kDa spin cut-off filter or PCA precipitation as indicated		
	Cell/ tissue samples were not completely homogenized	Use Dounce homogenizer (increase the number of strokes); observe for lysis under microscope		
	Samples used after multiple free-thaw cycles	Aliquot and freeze samples if needed to use multiple times		
	Presence of interfering substance in the sample	Troubleshoot if needed		
	Use of old or inappropriately stored samples	Use fresh samples or store at correct temperatures until use		
Lower/ Higher readings in Samples and Standards	Improperly thawed components	Thaw all components completely and mix gently before use		
	Use of expired kit or improperly stored reagents	Always check the expiry date and store the components appropriately		
	Allowing the reagents to sit for extended times on ice	Always thaw and prepare fresh reaction mix before use		
	Incorrect incubation times or temperatures	Refer datasheet & verify correct incubation times and temperatures		
	Incorrect volumes used	Use calibrated pipettes and aliquot correctly		
Readings do not follow a linear pattern for Standard curve	Use of partially thawed components	Thaw and resuspend all components before preparing the reaction mix		
	Pipetting errors in the standard	Avoid pipetting small volumes		
	Pipetting errors in the reaction mix	Prepare a master reaction mix whenever possible		
	Air bubbles formed in well	Pipette gently against the wall of the tubes		
	Standard stock is at an incorrect concentration	Always refer the dilutions in the data sheet		
	Calculation errors	Recheck calculations after referring the data sheet		
	Substituting reagents from older kits/ lots	Use fresh components from the same kit		
Unanticipated results	Measured at incorrect wavelength	Check the equipment and the filter setting		
	Samples contain interfering substances	Troubleshoot if it interferes with the kit		
	Use of incompatible sample type	Refer data sheet to check if sample is compatible with the kit or optimization is needed		
	Sample readings above/below the linear range	Concentrate/ Dilute sample so as to be in the linear range		
Note: The most probable list of caus	te: The most probable list of causes is under each problem section. Causes/ Solutions may overlap with other problems.			