

Technical Manual

High-density Lipoprotein Cholesterol (HDL-C) Colorimetric Assay Kit (Double reagents)

Catalogue Code: MAES0148

• Size: 96T

Research Use Only

1. Key Features and Sample Types:

Detection method:

Colorimetric method

Specification:

96T

Range:

0.06-3.8 mmol/L

Sensitivity:

0.06 mmol/L

Storage:

2-8°C for 6 months

Expiry:

See Kit Label

Experiment Notes:

This kit is for research use only.

Instructions should be strictly followed. Changes of operation may result in unreliable results.

The validity of kit is 6 months.

Do not use components from different batches of kit.

2

2. Background:

High-density lipoprotein cholesterol is mainly synthesized in the liver. It is an antiatherosclerotic lipoprotein that can transport cholesterol from extrahepatic tissues to the liver for metabolism and excretion of bile from the body. Its plasma level is negatively correlated with the risk of cardiovascular disease. High-density lipoprotein can take cholesterol from the cell membrane, catalyzed by lecithin cholesterol acyltransferase to form cholesterol ester, and then transfer the carried cholesterol ester to very low density lipoprotein and low density lipoprotein. High-density lipoprotein cholesterol content is relatively fixed, containing about 20% to 30% of the total body cholesterol.

3. Intended Use:

This kit can be used for detection of high-density lipoprotein cholesterol (HDL-C) content in serum and plasma samples.

4. Detection Principle:

CM, VLDL and LDL coagulate in a polyanionic environment to form a polymer and are masked by the polymer. High-density lipoprotein (HDL) form soluble compounds under the action of a surfactant, so that HDL-C can directly react with enzyme reagents containing cholesterol esterase (CE) and cholesterol oxidase (CO) to produce hydrogen peroxide. Hydrogen peroxide is catalyzed by oxidase (POD) in the presence of 4-aminoantipyrine (4-AA) and phenol (T-OOS) to form a red quinone compound. The coloured substance have a maximum absorption peak at 546 nm. Measure the OD value at 546 nm and the HDL-C content in the sample can be calculated.

5. Kit Components & Storage:

Item	Specification	Storage
Enzyme working Solution 1	18 mL × 1 vial	2-8°C, 6 months, avoid direct sunlight
Enzyme working Solution 2	6 mL × 1 vial	2-8°C, 6 months, avoid direct sunlight
Standard	Lyophilized × 1 vial	2-8°C, 6 months, avoid direct sunlight
Microplate	96 wells	No requirement
Plate Sealer	2 pieces	

Email: info@assaygenie.com Web: www.assaygenie.com

Materials required but not supplied

- Micropipettor
- Incubator
- Centrifuge
- Microplate Reader (530-570 nm)
- Tips (10 μL, 200 μL, 1000 μL)
- EP tubes (1.5 mL, 2 mL)
- · Double distilled water
- Normal Saline (0.9% NaCl)
- PBS (0.01 M, pH 7.4)

6. Assay Notes:

Prevent the formulation of bubbles when adding the liquid to the microplate.

7. Reagent Preparation:

- 1. Bring all reagents to room temperature before use.
- 2. **Preparation of standard solution:** Dissolve a vial of standard powder with double distilled water (refer to the delivery manual for volume) before use.

8. Sample Preparation:

1. Serum sample:

Collect fresh blood and stand at 25°C for 30 min to clot the blood. Then centrifuge at 2000 g for 15 min at 4°C. Take the serum (which is the upper light yellow clarified liquid layer) and preserve on ice before detection.

2. Plasma sample:

Take fresh blood into the tube which has anticoagulant (Heparin is used as anticoagulant and it is 10-12.5 IU of Heparin into 1 mL blood), centrifuge at 700-1000 g for 10 min at 4°C. Take the plasma (which is the upper light yellow clarified liquid layer, don't take white blood cells and platelets in the middle layer) and preserve on ice before detection.

Sample Notes:

The concentration should be determined before preforming the assay. If the sample concentration is not within the range of the standard curve, users must determine the optimal sample dilutions for their particular experiments.

If the sample type is not included in the manual, a preliminary experiment is suggested to verify the validity.

Dilution of Samples:

Large variances in results may be seen when performing pre-experiments. Dilute the sample according to the result of the pre-experiment and the detection range (0.06-3.8 mmol/L).

The recommended dilution factor for different samples is as follows (for reference only).

Sample Type:	Dilution Factor:
Human serum	1
Human plasma	1
Mouse serum	1
Mouse plasma	1
Rat serum	1
Rat plasma	1
Porcine serum	1

Note: The diluent is normal saline (0.9% NaCl) or PBS (0.01 M, pH 7.4);

9. Assay Protocol:

Ambient Temperature: 25-30°C

Optimum detection wavelength: 546 nm

Plate Set Up:

	1	2	3	4	5	6	7	8	9	10	11	12
Α	Α	Α	S13	S21	S29	S37	S45	S53	S61	S69	S77	S85
В	В	В	S14	S22	S30	S38	S46	S54	S62	S70	S78	S86
С	S1	S7	S15	S23	S31	S39	S47	S55	S63	S71	S79	S87
D	S2	S8	S16	S24	S32	S40	S48	S56	S64	S72	S80	S88
E	S3	S9	S17	S25	S33	S41	S49	S57	S65	S73	S81	S89
F	S4	S10	S18	S26	S34	S42	S50	S58	S66	S74	S82	S90
G	S5	S11	S19	S27	S35	S43	S51	S59	S67	S75	S83	S91
Н	S6	S12	S20	S28	S36	S44	S52	S60	S68	S76	S84	S92

Note: A, blank wells; B, standard wells; S1-S92, sample wells.

10. Operation Steps:

Operation table with 96 wells microplate reader

	Blank well	Standard well	Sample well		
Double distilled water (µL)	2.5				
Standard solution (µL)		2.5			
Sample (µL)			2.5		
Enzyme working Solution 1 (μL)	180	180	180		
Mix fully and incubate at 37°C for 5 min. Measure the OD value (A ₁) at 546 nm with microplate reader.					
Enzyme working Solution 2 (μL)	60	60	60		
Mix fully and incubate at 37°C for 5 min. Measure the OD value (A_2) at 546 nm with microplate reader. $\Delta A = A_2 - A_1$					

Operation table with automatic biochemical analyser

Setting parameter

Main wavelength	546 nm
Reaction type	Terminal method
Reaction direction	Up reaction (+)

Operation steps

Sample/ Double distilled water (µL)	2.5				
Enzyme working Solution 1 (μL)	180				
Mix fully and incubate at 37°C for 5 min. Measure the OD value (A1) at 546 nm with biochemical analyzer.					
Enzyme working Solution 2 (μL)	60				
Mix fully and incubate at 37°C for 5 min. Measure the OD value (A ₂) at 546 nm with biochemical analyzer.					

Email: info@assaygenie.com_Web: www.assaygenie.com

11. Calculations:

1. Serum (plasma) and other liquid sample:

Operate with microplate reader:

$$\frac{\mathsf{HDL-C}}{(\mathsf{mmol/L})} = (\Delta \mathsf{A}_{\mathsf{Sample}} - \Delta \mathsf{A}_{\mathsf{Blank}}) \div (\Delta \mathsf{A}_{\mathsf{Standard}} - \Delta \mathsf{A}_{\mathsf{Blank}}) \times \mathsf{c} \times \mathsf{f}$$

ΔA: A₂ - A₁

c: The concentration of standard

f: Dilution factor of sample before tested

$$\frac{\mathsf{HDL-C}}{(\mathsf{mmol/L})} = \Delta \mathsf{A}_{\mathsf{Sample}} - \Delta \mathsf{A}_{\mathsf{Standard}} \times \mathsf{c} \times \mathsf{f}$$

12. Performance Characteristics:

Detection Range	0.06-3.8 mmol/L
Sensitivity	0.06 mmol/L
Average recovery rate (%)	95
Average inter-assay CV (%)	5.0
Average intra-assay CV (%)	3.0

Analysis

Take 2.5 µL of mouse serum, carry the assay according to the operation table.

The results are as follows:

The average OD value of the blank (A_1) is 0.043, the average OD value of the blank (A_2) is 0.059, the average OD value of the standard (A_1) is 0.064, the average OD value of the standard (A_2) is 0.172, the average OD value of the sample (A_1) is 0.050, the average OD value of the sample (A_2) is 0.246, and the calculation result is:

$$\frac{\text{HDL-C}}{(\text{mmol/L})} = \frac{(0.246-0.050)-(0.059-0.043)}{(0.172-0.064)-(0.059-0.043)} \times 1.1 \text{ mmol/L}$$
$$= 2.15 \text{ mmol/L}$$

Safety Notes

Some of the reagents in the kit contain dangerous substances. Avoid touching skin and clothing.

Wash immediately with plenty of water if touching it carelessly.

All the samples and waste material should be treated according to the relevant rules of laboratory's biosafety.

Before the experiment, read the instructions carefully, and wear gloves and work clothes.

Assay Genie 100% money-back guarantee!

If you are not satisfied with the quality of our products and our technical team cannot resolve your problem, we will give you 100% of your money back.

Contact Details

Email: info@assaygenie.com

Web: www.assaygenie.com