Recombinant Human TH TYH Protein (Sumo Tag) AssayGenie

RPES8141

Product Information

Product SKU: Tag:	RPES8141 N-Sumo	Expression Host: Reactivity:	E.coli Human		Size: Accession:	20µg Р07101-3	
Additional Information							
Calculated MW	/: 41.4 kDa	Obse	erved MW:	50 kDa			
Sequence:	Met1-Arg260	0					

Protein Information

Background:	Tyrosine hydroxylase (TH) is a rate-limiting enzyme in catecholamine synthesis.			
	Tyrosine hydroxylase activity is modulated by protein-protein interactions with			
	enzymes in the same pathway or the tetrahydrobiopterin pathway, structural proteins			
	considered to be chaperones that mediate the neuron's oxidative state, and the			
	protein that transfers dopamine into secretory vesicles. It is phosphorylated at serine			
	(Ser) residues Ser8, Ser19, Ser31 and Ser40 in vitro. The phosphorylation of tyrosine			
	hydroxylase at Ser19 or Ser8 has no direct effect on tyrosine hydroxylase activity. As			
	tyrosine hydroxylase (TH) catalyses the formation of L-DOPA, the rate-limiting step in			
	the biosynthesis of DA, the Parkinson's disease (PD) can be considered as a TH-			
	deficiency syndrome of the striatum. A direct pathogenetic role of TH has also been			
	sµggested, as the enzyme is a source of reactive oxygen species (ROS) in vitro and a			
	target for radical-mediated oxidative injury. Recently, it has been demonstrated that			
	L-DOPA is effectively oxidized by mammalian Tyrosine hydroxylase in vitro, possibly			
	contributing to the cytotoxic effects of DOPA.			
Synonyms:	-			
Endotoxin:	< 10 EU/mg of the protein as determined by the LAL method			
Formulation :	Lyophilized from a 0.2 μm filtered solution in PBS with 5% Trehalose and 5% Mannitol.			
Purity:	> 90% as determined by reducing SDS-PAGE.			
Bio-Activity :	Not validated for activity			

Storage:Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to
-80°C. Reconstituted protein solution can be stored at 4-8°C for 2-7 days. Aliquots of
reconstituted samples are stable at < -20°C for 3 months.</th>